- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Chae, Hyun Uk (3)
-
Kapadia, Rehan (3)
-
Ahsan, Ragib (2)
-
Tao, Jun (2)
-
Wu, Zezhi (2)
-
Cronin, Stephen B (1)
-
Das, Subrata (1)
-
Jalal, Seyedeh_Atiyeh Abbasi (1)
-
Kim, Hee gon (1)
-
Lee, Chun-Ho (1)
-
Liu, Hefei (1)
-
Sanchez_Vazquez, Juan (1)
-
Sideris, Constantine (1)
-
Vazquez, Juan Sanchez (1)
-
Wang, Han (1)
-
Wu, Jiang-Bin (1)
-
Yu, Mengji (1)
-
Yu, Yiyan (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ahsan, Ragib; Chae, Hyun Uk; Jalal, Seyedeh_Atiyeh Abbasi; Wu, Zezhi; Tao, Jun; Das, Subrata; Liu, Hefei; Wu, Jiang-Bin; Cronin, Stephen B; Wang, Han; et al (, ACS Nano)
-
Tao, Jun; Vazquez, Juan Sanchez; Chae, Hyun Uk; Ahsan, Ragib; Kapadia, Rehan (, IEEE Journal of Quantum Electronics)The success of artificial neural networks (ANNs) in machine vision techniques has driven hardware researchers to explore more efficient computing elements for energy-expensive operations such as vector-matrix multiplication (VMM). In this work, InP-based floating-gate photo-field-effective transistors (FG-PFETs) are demonstrated as computing elements that integrate both photodetection and initial signal processing at the sensor level. These devices are fabricated from semiconductor channels grown via a back-end CMOS compatible templated liquid phase (TLP) approach. Individual devices are shown to exhibit programmable responsivity, mimicking the effect of a synapse connecting the photodetector to a neuron. Using these devices, a simulated optical neural network (ONN) where the experimentally measured performance of FG-PFETs is used as an input shows excellent image recognition accuracy for color-mixed handwritten digits.more » « less
An official website of the United States government
